

High-Temperature Polymer Membranes

Seong-Woo Choi, Suhas Niyogi, Romesh Kumar, and Deborah Myers Chemical Engineering Division

This presentation does not contain any proprietary or confidential information

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Project Objectives

- To develop a proton-conducting membrane electrolyte for operation at 120-150°C and low humidities to meet DOE's technical targets
- Investigate use of dendritic macromolecules attached to polymer backbones, cross-linked dendrimers, and inorganicorganic hybrids

_	Measure	thermal	stabilities	and	conductivities	of s	samples	11/03
---	---------	---------	-------------	-----	----------------	------	---------	-------

_	Prenare and	d characterize	inorganic_	organic k	ovhride	02/04
_	Prepare and	a Characterize	inorganic-	organic i	IVDITUS	UZ/U4 V

_	Fabricate and test MEAs using high-temperature	
	membranes	09/04

Budget

 Total Project Funding, FY'02-FY'04:

\$700 K

FY'04 Funding:

\$250 K

Technical Barriers and Targets

This project addresses DOE's Technical Barriers for Fuel Cell Components

- E: Distributed Generation Durability
- O: Stack Material and Manufacturing Cost
- P: Component Durability
- Q: Electrode Performance
- R: Thermal and Water Management

DOE's Technical Targets:

- High, sustained proton conductivity (>0.1 S/cm) at 120°C and 25% RH (automotive)
- Low oxygen and hydrogen cross-over (2 mA/cm²)
- Low cost, <\$5/kW
- Durability of >5,000 hours
- Able to withstand temperatures as low as -40°C

Approach: Dendritic macromolecules and Organic/inorganic hybrids

Dendritic Macromolecules

- √ Highly branched spherical macromolecules
- ✓ High surface charge densities
 - May facilitate high proton transfer with reduced water mediation
 - May improve water retention at high temperatures

Inorganic/Organic Hybrids

- √ Variable charge density and distribution
- √ High thermal and dimensional stabilities
- ✓ Inorganic component improves water retention at high temperatures

Safety

- Internal safety reviews have been performed for all aspects of this project to address ESH issues
 - Membrane synthesis
 - All synthesis is performed in a hood to exhaust vapors of organic solvents (e.g., DMF)
 - Used organic solvents are collected and disposed of through the laboratory's Waste Management Operations
 - Membrane testing
 - Thermal gravimetric analysis purge gas exhausted into hood
 - Conductivity apparatus "safe" hydrogen (<4% H₂ in He) is used as a purge gas
- Safety reviews are updated and renewed annually

Project Timeline

FY'02			F١	/ '03		FY'	04		F۱	Y '05	
1	2	3	4	5	6	7	8	9	10	11	12

- 1, 2, 3: Evaluated 3 classes of dendrimers, established capability to measure ionic conductivity, down-selected to one class of dendrimer
- 4, 5, 6: Characterized and measured ionic conductivity of polyarylether hyperbranched membrane, prepared membranes from modified commercial systems (PEO), improved membrane properties
- 7, 8, 9: Measured thermal stabilities and proton conductivities of membranes, improved membrane-forming characteristics of materials, fabricate membrane-electrode assembly from most promising material
- 10, 11, 12: Down-select membrane materials, determine durability under fuel cell operating conditions, modify materials to improve performance

Dendritic macromolecular membranes

- Aryl ether dendrimers chosen due to high thermal stability
- High density of sulfonate groups imparts water solubility
 - cross-linking eliminates water solubility and controls swelling
 - identity of cross-linker determines pore size and film-forming characteristics
 - attaching dendrimer to polymer backbone is an alternative strategy to eliminate water solubility and allow film formation

Dendrimers have been attached to polyepichlorohydrin to form water-insoluble films

PECH-G2-SO₃H

M.W of Polyepichlohydrin = 100K or 700K

PECH-G3-SO₃H

M.W of Polyepichlohydrin = 100K

TGA shows PECH-G2-SO₃H polymer is stable up to 190°C

PECH MW = 100,000

Dendronized polyepichlorohydrin has a high density of proton-conducting groups, but is water insoluble

Acid titration results:

- PECH-G2-SO₃H: 4.0 meq/g

PECH-G3-SO₃H: 4.05 meq/g

- Nafion: 0.91 meq/g

Initial conductivity results for PECH-G2/G3-SO₃H: (20% G2/80% G3)

Temperature (°C)	Relative Humidity (%)	Conductivity (S/cm)
21	100	0.031
56	100	0.081
73	59	0.036
98	22	0.022

- Initial conductivity results for PECH-G2-SO₃H (MW PECH = 700K):
 - 0.101 S/cm at 76°C and 6% relative humidity

Inorganic-organic hybrid membranes

- Cyclic organic component
 - high thermal stability (>300°C)
 - high density of sites for functionalization
 - low cost
- Sulfonated organic component blended with colloidal silica in formaldehyde to form a gel
- Gel is freeze-dried to form an inorganic-organic hybrid material with an equivalent weight of ~600
- Initial film formed by blending with Nafion solution (Nafion 70 wt%, Organics 14 wt%, Silica 16 wt%)

Inorganic-organic hybrid has higher conductivity than Nafion in testing up to 80°C

Hybrid conductivity was stable through four days of testing

Interactions and Collaborations

- Sub-contract with Case Western Reserve University to prepare all-aromatic dendrimers was completed 12/03
- Presentations at International Energy Agency workshops
- U.S. Patent Application 20030035991
- Establishing collaboration with Toyota Motor Corporation

Future Work

- Complete characterization of G2, G3, and G4 dendritic polymers with PECH (MW = 100K and 700K)
- Cross-link PECH-dendritic polymers to improve mechanical properties
- Cross-link dendrimers to form dendrimeric network
- Develop film-forming techniques for inorganic-organic hybrids that do not rely on Nafion
- Fabricate and test a MEAs using high-temperature membranes

Acknowledgments

- Funding from the U.S. Department of Energy, Energy
 Efficiency, Renewable Energy: Hydrogen, Fuel Cells &
 Infrastructure Technologies Program is gratefully
 acknowledged
- Nancy Garland, DOE Technology Development Manager

